Characterization of P-Property for some Z-Transformations on positive semidefinite cone

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Characterization of P -property for Some Z-transformations on Positive Semidefinite Cone

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

متن کامل

Characterization of P-Property for some Z-Transformations on positive semidefinite cone

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

متن کامل

Positive Semidefinite Germs on the Cone

The problem of representing a positive semidefinite function (=psd) as a sum of squares (=sos) is a very old matter in real algebra and real geometry. Still, it is a difficult question always appealing the specialists. Concerning real analytic germs we can summarize what is known in a few statements. Let X be a irreducible real analytic set germ of dimension d. Any psd f of X is an sos of merom...

متن کامل

Characterization of some aggregation functions stable for positive linear transformations

This paper deals with the characterization of some classes of aggregation functions often used in multicriteria decision making problems. The common properties involved in these characterizations are “increasing monotonicity” and “stability for positive linear transformations”. Additional algebraic properties related to associativity allow to completely specify the functions.

متن کامل

On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras

The P, Z, and S properties of a linear transformation on a Euclidean Jordan algebra are generalizations of the corresponding properties of a square matrix on R. Motivated by the equivalence of P and S properties for a Z-matrix [2] and a similar result for Lyapunov and Stein transformations on the space of real symmetric matrices [6], [5], in this paper, we present two results supporting the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2011

ISSN: 1081-3810

DOI: 10.13001/1081-3810.1488